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Abstract
This work aims to evaluate the predictive capability of three bivariate statistical models, namely information value, fre-
quency ratio, and evidential belief functions, in gully erosion susceptibility mapping in northeastern Maysan Governorate 
(Ali Al-Gharbi District) in southern Iraq. The gully inventory map, consisting of 21 gullies of different sizes, was prepared 
based on the interpretation of remotely sensed data supported by field survey. The gully inventory data (polygon format) 
were randomly partitioned into two sets: 14 gullies for build and training the bivariate model, and the remaining 7 gullies 
for validating purposes. Twelve gully influential factors were selected based on data availability and the literature review. 
The selected factors were related to lithology, geomorphology, soil, land cover, and topography (primary and secondary) 
settings. Analysis of factor importance using information gain ratio proved that out of 12 gully influential factors, eight 
were of more importance in developing gullies (the average merit was greater than zero). The most important factors and 
the training gully inventory map were used to generate three gully erosion susceptibility maps based on the three bivariate 
models used. For validation, the area under the operating characteristics curves for both success and prediction rates was 
used. The results indicated that the highest prediction rate of 82.9% was achieved using the information value technique. All 
the bivariate models had prediction rates greater than 80%, and thus they were regarded as very good estimators. The final 
conclusion was that the bivariate models offer advanced techniques for mapping gully erosion susceptibility.
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Introduction

Gully erosion is an erosive process that significantly con-
tributes to shaping the earth’s surface and plays a major role 
in the degradation of land and soil loss (Billi and Dramis 
2003). Gully erosion is regarded as a potentially destruc-
tive process that poses a threat to life and property (Ionita 
et al. 2015) and is widely accepted now as an indicator of 
desertification and land degradation worldwide (Poesen 
et al. 2003). A gully is a relatively deep eroded channel 
formed by concentrated surface flow in narrow flow paths 
resulting from removing soil and parent material and may 
grow into gullies deeper than 13 cm over short-time periods 

(USDA-SCS 1966; Luffman et al. 2015). Gully forming is a 
complex natural process controlled by factors mainly related 
to topography, soil, land use/land cover (LULC), and cli-
mate. The increasing interest in the study of gully erosion 
is derived from the need to increase our understanding of 
its impact and thus attempt to control its adverse effects. To 
control and prevent the adverse effects of gully erosion, the 
spatial extent of the gullies and the factors that control their 
formation should be evaluated (Le Roux and Sumner 2012).

In this context, various methods have been reported for 
modeling gully erosion, and they can be classified into two 
major categories: quantitative and qualitative. The quantita-
tive methods describe the process of detachment, transpor-
tation, and deposition of the eroded soil in mathematical 
equations that can be solved analytically or numerically to 
quantify soil erosion rate. The chemicals, runoff, and erosion 
from agricultural management system (CREAMS) (Knisel 
1980), ephemeral gully erosion (EGEM) (Capra et al. 2005; 
Merkel et al. 1988), and the linear erosion package of the 
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Water Erosion Prediction Project (WEPP) (Flanagan and 
Nearing 1995) are good examples of these models. The main 
limitations of these models are in two points: They are inca-
pable of predicting spatial distribution of gullies which is an 
important tool in erosion control planning (Conoscenti et al. 
2013), and they require input parameters with high accu-
racy that are often unavailable or difficult to assess (Akgün 
and Türk 2011). With the advent of geographic information 
systems and tremendous developments in acquiring valu-
able remotely sensed data, empirical models (a special case 
of quantitative-based models) have become more sophis-
ticated in their approach to quantifying soil erosion rate 
and studying the hazards associated with it. The empirical 
models estimate erosion rate by combining a prefixed set of 
physical parameters, such as rainfall erosivity and soil erod-
ibility, based on certain standard coefficients or procedures. 
The Universal Soil Loss Equation (USLE) (Wischmeier 
and Smith 1965) and its derivatives are examples of these 
models.

The second category of methods, namely the qualitative, 
is mainly used to evaluate the soil erosion risk or assess 
the erosion susceptibility at different scales (Conoscenti 
et al. 2014). Susceptibility is a term that is used to identify 
the probability of spatial occurrence of a phenomenon by 
defining the relationship between a set of physical factors 
(predictor variables) and the distribution of the events in 
the past (response variables) (Lucà et al. 2011). Therefore, 
the calculated probability values can be used to generate a 
map of gully erosion susceptibility that demonstrates the 
spatial proneness of an area to this process. In this context, 
the statistical bivariate and multivariate models are consid-
ered to be the most common models to assess gully ero-
sion susceptibility (Meyer and Martínez-Casasnovas 1999; 
Akgün and Türk 2011; Conforti et al. 2011; Lucà et al. 2011; 
Conoscenti et al. 2013, 2014; Rahmati et al. 2016a, b; Con-
oscenti et al. 2017). In bivariate statistical models, such as 
statistical index (SI), frequency ratio (FR), and weights of 
evidence (Wof), each factor that is affecting gully forming is 
analyzed individually in a straightforward and efficient way 
(Suzen and Doyuran 2004). Conversely, in multivariate sta-
tistical models, such as logistic regression (LG), the relation-
ship between influencing gully-forming factors is analyzed 
together to study the occurrence of gullies. The response 
variable in LG is binary (i.e., presence or absence of gul-
lies), and the resulting values of the model are probability 
values (Lucà et al. 2011) that are usually easy to interpret. In 
addition, the predictor variables can be numeric, categorical, 
ordinal, nominal, or a combination of these and it is unnec-
essary for them to be normally distributed.

In light of successful application of bivariate mod-
els—besides their simplicity and ease of implementation 
in a GIS environment—three bivariate statistical models, 
namely information value (InVal), frequency ratio (FR), and 

evidential belief functions (EBF), are used here for assessing 
proneness to gully erosion in Ali Al-Gharbi District, Maysan 
Governorate, Republic of Iraq. The northeastern part of the 
considered area (close to the Iraq–Iran border) is typically 
prone to the gully creation process that affects different litho-
logical and soil types. The prediction performance of the 
bivariate models used was assessed and compared to identify 
the best model using the receiver operating characteristics 
curve (ROC) technique for both success (training) and pre-
diction (testing) data. Specifically, the data processing and 
modeling were carried out using various software packages 
such as ArcGIS 10.2, Weka 3.8, and IDRISI Selva 17.

Description of the study area

The study area is a part of Ali Al-Gharbi District that is 
located in northern Maysan Governorate (Fig. 1) and covers 
an area of 1576 km2. The considered area is bounded on the 
northeast by the Iraq–Iran border and on the southwest by 
the Tigris River (outside of the considered area). The surface 
elevation ranges from 2 to 144 m. The climate of the study 
area is generally arid to semiarid and is basically character-
ized by two distinct seasons, with hot and dry summers and 
cold and wet winters. The minimum and maximum monthly 
average temperatures for the period 1995–2015 were 12.75 
and 38.5 °C, respectively. The average monthly recorded 
temperature is 26 °C. The monthly average minimum and 
maximum rainfall totals are 0 and 62 mm. The rainy period 
extends from October till May. Rainfall in the remaining 
months of May to October is rather low. Generally, the east-
ern parts (hills) of the considered area receive greater rain-
fall than the western parts (plains). The average mean of 
annual rainfall is 212 mm/year (Al-Abadi et al. 2016).

From the geological point of view, the exposed rocks 
in the study area belong to the Quaternary sediments 
(Pleistocene and Holocene Epochs) (Buday and Jassim 
1987) (Fig. 2). The Quaternary sediments are unconsoli-
dated and usually finer-grained than the underlying Muk-
dadiya and Bai Hassan Formations (Bellen et al. 1959). 
The major lithological units of the Quaternary deposits 
are alluvial fan, flood plain, depression fill, and eolian 
(Al-Abadi 2012) (Table 1). Tectonically speaking, Iraq 
is divided into three distinct areas: stable shelf, unstable 
shelf, and Zagros suture (Jassim and Goff 2006). Most 
of the study area is located within the eastern part of the 
Mesopotamian zone within the stable shelf and bounded 
on the northeast by the high folded zone (Himmren Hills). 
Regarding the geomorphology, the study area is a flat and 
featureless surface bounded by the foothill zone in the 
northeast (Iraq–Iran border). The trend of these hills is 
southeastern and parallel to the Zagros Mountains. Gener-
ally, hills are not continuous ridges, but a series of ridges 
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with their axes oriented in a northwest–southeast direction 
(Al-Abadi et al. 2016). The upper parts of the hills are 
generally exposed to weathering and the erosion process, 
and thus a thick soil layer of fine texture has formed over 
them. The dominant landforms within the study areas are 

sand dunes, glacis, alluvial fan, floodplains, and depres-
sions (Fig. 3). More detail on these landforms can be found 
in Al-Abadi (2012). Two types of soil found in the study 
area are mollisols and aridisols. In the examination area, 
the principle erosive process that influences the landscape 

Fig. 1  Geographical location of 
the study area
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is identified with overland flow, which can take the form of 
a flash flood coming from Iranian territory during heavy 
rainfall events.   

Methodology

The methodology adapted in this study (Fig. 4) consisted 
of four steps: (1) preparing a gully erosion inventory map, 
(2) selecting and preparing gully erosion influential factors, 
(3) applying bivariate models and creating gully erosion 
susceptibility maps, and (4) validating gully erosion sus-
ceptibility maps using the receiver operating characteristic 

(ROC) curve and identifying the best one according to the 
area under the ROC curve (AUC).

Gully landform inventory map

The preparation of a gully inventory is the first step in devel-
oping a map of gully erosion susceptibility. With the aid 
of interpretation of remotely sensed data, supported by an 
extensive field survey that was carried out in 2016, 21 gully 
areas were identified and mapped (Fig. 1). The identified 
gully areas encompass 26.74 km2 (1.7%) of the total study 
area. To build bivariate models, these 21 gullies were ran-
domly partitioned into two sets: 14 gullies for training and 

Fig. 2  Exposed lithological 
units in the study area

Table 1  Lithological units in the study area. (Summarized after Al-Abadi 2012)

Lithological units Description Age Occupied 
area  (km2)

Are (%)

Alluvial These deposits mainly comprise gravel, sand, and silty sand with a maximum 
thickness of 15 m. Poorly sorted cabbles and boulder occur in apical part 
passing into finer-grained better sorted layered fluvial deposits. Gypcrete also 
developed on the exposed surface of the fan

Pleistocene–
Holocene

1018 65.0

Flood plain Comprise layers of silt clay and clay (10–20 cm) and sometimes up to 1 m thick Holocene 22 1.40
Depression fill Comprise reddish brown fine sand, silt, and clayey silt Holocene 48 3.10
Eolian Comprise silty reddish brown and calcareous sand Holocene 488 31.0
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the remaining 7 gullies for testing and validating the bivari-
ate models (Fig. 1). In the considered area, gullies have lin-
ear plan forms and their length ranges from a few meters 
to thousands of meters with an average depth of 1.75 m. 
In general, the cross sections of these gullies are U shaped 
although sometimes V-shaped ones are found, too.

Selecting and preparing gully erosion influential 
factors

The second step in developing a map of soil erosion suscep-
tibility of an area was to select the gully erosion influential 
factors. Basically, the proneness of gully erosion is a func-
tion of two properties: the erodibility of the soil material 
and the erosivity of overland flow (Conoscenti et al. 2008). 
These properties are essentially related to the lithology, 
topography, climate, soil, and land use/land cover (LULC) of 
the considered area. For this work, 12 factors were selected 
based on the literature review (Svoray and Markovitch 2009; 
Conforti et al. 2011; Akgün and Türk 2011; Lucà et al. 2011; 
Conoscenti et al. 2013, 2014; Shit et al. 2015), availabil-
ity of data, and knowledge of the study area. The selected 
factors were first these topographic primary factors: alti-
tude, slope, plan curvature, profile curvature, and aspect. 
Secondary topographic factors were length–slope (LS), 

stream power index (SPI), and topographic wetness index 
(TWI). Additional factors were lithology, geomorphology, 
soil texture, and LULC. The selected factors are well known 
and comprehensively discussed in the literature for study-
ing gully erosion susceptibility. All the topographic-related 
factors were derived from Shuttle Radar Topography Mis-
sion (SRTM) digital elevation model (DEM) with a 1 arc 
spatial resolution (approximately 30 × 30 m). Two tiles of 
SRTM were downloaded from the official site of the US 
Geological Survey (USGS) website (https ://earth explo rer.
usgs.gov/), merged, sinks filled, and reprojected to Univer-
sal Transverse Mercator (UTM)-projected coordinate system 
with (38 N WGS 1984) datum. Altitude was directly derived 
from SRTM DEM and classified into four classes (McDon-
ald et al. 1990): < 9 m (plains), 9–30 m (rises), 30–90 m 
(hills), and 90–300 m (hills) (Fig. 5a). The other primary 
topographic factors—i.e., slope, plan curvature, profile cur-
vature, and aspect—were also derived from SRTM DEM 
using the Spatial Analyst extension in ArcGIS 10.2 software. 
In this context, slope was classified into five classes accord-
ing to de Winnaar et al. (2007): < 2% (flat), 2–8% (undulat-
ing), 8–15% (rolling), 15–30% (hilly), and > 30% (moun-
tainous) (Fig. 5b). These classes are distributed unevenly 
through the study area, with the major part of the study area 
(98%) belonging to the flat and undulating classes. The plan 

Fig. 3  Major landforms distrib-
uted in the study area

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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curvature was classified into three classes: < 0 (concave), 0 
(flat), and > 0 (convex) (Fig. 5c), while profile curvature was 
also classified into three classes: < − 0.001, − 0.001 to 0.001, 
and > 0.001 (Fig. 5d). In the same way, aspect was also cre-
ated from SRTM DEM and classified into nine classes: flat, 
north, northeast, east, southeast, south, southwest, west, and 
northwest (Fig. 5e). The secondary topographic factors—
i.e., TWI, SPI, and LS—were created from SRTM DEM 
using the Raster Calculator and ArcHydro tools in ArcMap 
10.2 software. The following equations were applied to cre-
ate these factors (Moore et al. 1991; Conforti et al. 2011)

(1)TWI = ln
(

As

tan �

)
,

(2)SPI = As × tan �,

where As is the specific catchment area (m), θ is the slope 
gradient in degrees, fa is the flow accumulation layer derived 
using the ArcHydro tool, and cell size is the resolution of 
used DEM (here 30 m). All these factors were classified into 
five categories (Fig. 5f–h).

The lithological and geomorphological maps of the 
study area were derived from the hard copies of these maps 
that were provided by the Iraqi Geological Survey with 1: 
1,000,000 scale (Figs. 2 and 3). To prepare soil texture map, 
a total of 25 soil samples were collected and analyzed using 
Sizer Master Instrument in the Department of Geology, Col-
lege of Science, University of Basra. The soil samples were 
assigned appropriate texture name using the triangle of US 

(3)LS = (fa × cell size∕22.13)0.4 × (sin �∕0.0896)1.3,

Main objective:
Mapping of gully erosion susceptibility

Selection of the study area

Detection of gullies using aerial 
photographs and field survey

Representation of gullies as 
polygons in GIS environment

Random Partition30% 70%

7polygons 14 polygons

Topographic factors
- Altitude
- Slope
- Plan curvature
- Profile curvature
- Aspect
- TWI
- SPI
- LS

Geomorphology
LULC 
Soil texture 
Lithological units

Selection of 12 factors relevant 
to gully erosion susceptibility

Analysis of factor importance using
Information Gain Ratio

Implementing bivariate models using 
training data and significance factors

Creation of gully erosion susceptibility 
maps

Validation of the results using ROC 
curves (success and prediction rates)

Identify the best bivariate model based 
on ROC results

Fig. 4  Flowchart showing the methodology followed in this study
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Fig. 5  Gully influential factors a 
altitude (m), b slope (%), c plan 
curvature, d profile curvature 
(100/m), e aspect, f TWI, g SPI, 
h LS, i soil texture, j LULC



www.manaraa.com

 Environmental Earth Sciences (2018) 77:249

1 3

249 Page 8 of 20

Fig. 5  (continued)
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Fig. 5  (continued)
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Fig. 5  (continued)
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Fig. 5  (continued)
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Department of Agriculture (USDA), Fig. 5i. Finally, the 
LULC map was derived from the interpretation of Landsat 
8 imagery and field checks. The maximum likelihood algo-
rithm as a supervised classification system was used after 
creation of a signature file from ground truth. The following 
LULC classes were predicted for the study area according to 
the Anderson et al. (1976) system: bare mud sheet, deserted 
crop land, dry salt land, high-density green cover, low-den-
sity green cover, quarry, sand dune, and sand sheet (Fig. 5j). 
About 50% of the study area was covered with sand dunes 
and sand sheet, with the other classes distributed unevenly 
through the study area.

All influential factors were prepared as raster factors with 
30 × 30 m spatial resolution to use in modeling gully erosion 
susceptibility in the considered area. It is accepted in the 
literature that the initial set of influential factors has dif-
ferent predictive abilities to create a realistic gully erosion 
susceptibility map. Hence, incorporating all influential fac-
tors into the analysis may reduce the predictive ability of 
the developed bivariate models. Therefore, it is preferable to 
carry out a feature selection process to evaluate and exclude 
those factors that may have adverse effects on the accuracy 
of the developed models. In this study, the information gain 
ratio (IGR) was used to screen the factors used and select 
the most influential in the gully erosion process in the con-
sidered area.

Modeling techniques

Information value (InVal)

In this simple bivariate statistical analysis, each individual 
influential gully factor was compared to the gully distribu-
tion inventory map (training data set), and the weighted 
value for each class i in a factor was determined on the basis 
of gully density for each individual class. Mathematically, 
InVal method is written as (Yalcin 2008):

where Wi is the weighting value of the class i of an influen-
tial gully factor; DensClass is the density of the gullies in 
the class i; DensMap is the density of gullies in the total area 
being studied; NpixSi is the number of training gully pixels 
in the class i; NpixNi is the number of pixels of the class i; 
∑NpixSi is the total number of gully pixels in the study area; 
and ∑NpixNi is the total number of pixels in the study area. 
A positive value of Wi means that there is a strong relation-
ship between the presence of gully and the factor class (Shit 
et al. 2015), while the negative value of Wi demonstrates a 

(4)Wi = ln
DensClass

DensMap
= ln

NpixSi
�
NpixNi

∑
NpixSi

�∑
NpixNi

,

weak relationship and, thus, the factor class has no effect on 
the development of the gully landform.

Finally, the Wi for all classes are summed in the GIS envi-
ronment (overlay and index method) to produce the proneness 
value to delineate the gully eroded area.

Frequency ratio (FR)

FR is the ratio of probability of an occurrence to that of a 
nonoccurrence for a given attribute and is defined as (Bonham-
Carter 1994):

The FR ratio defines the degree of correlation between 
gully location and the class of influential factor that contains 
the gully. So, the FR > 1 indicates a positive correlation and, 
thus, a high probability of gully occurrence, whereas FR < 1 
indicates a negative correlation and, thus, a low probability of 
gully occurrence. To produce the gully erosion susceptibility 
index using this technique, the following equation was used:

where GES is gully erosion susceptibility and n is the total 
number of influential factors involved in the analysis.

Evidential belief function (EBF)

The EBF is a bivariate statistical model based on the Demp-
ster–Shafer theory of evidence (Dempster 1968) and is 
regarded as a generalization of the Bayesian theory of subjec-
tive probability (Tien Bui et al. 2012). The EBF model has an 
ability to combine beliefs from multiple sources of evidence 
and relative flexibility to deal with uncertainty (Thiam 2005). 
EBFs consist of four mass functions: belief (Bel), disbelief 
(Dis), uncertainty (Unc), and plausibility (Pls). All these func-
tions have the range [0, 1]. In this bivariate technique, general-
ized Bayesian lower and upper probabilities represent Bel and 
Pls functions, respectively (Park 2011), while Unc represents 
the difference between Pls and Bel. On the other hand, the 
Dis function is equal to 1 − Pls. Hence, the sum of Bel, Unc, 
and Dis mass functions is equal to 1 (Carranza et al. 2005). 
In a GIS platform, the Bel function is calculated as (Al-Abadi 
2015):

where Cij is a factor class (j = 1, 2,…, m) and

(5)FR =
NpixSi

�
NpixNi

∑
NpixSi

�∑
NpixNi

.

(6)GES =

n∑

i=1

FRi,

(7)Belcij =
WcijF

∑m

j=1
WcijF

,
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The Dis function is computed as:

where

The Unc and Pls functions are determined via:

Once the four mass functions were computed, Dempster’s rule 
of combination was used to obtain the integrated mass func-
tions (Dempster 1968). Dempster’s rules for combining two 
factor maps A and B are as follows (Carranza et al. 2005):

The denominator β is called the normalization factor and is 
computed as:

Information gain ratio (IGR)

IGR is the ratio of information gain to the intrinsic informa-
tion. It is used to reduce a bias toward multivalued attributes 
by taking the number and size of branches into account when 
choosing an attribute. The IGR was proposed by Quinlan 
(1993) to overcome disadvantages associated with gain ratio 
technique. Assume there is a training data set defined as S that 
contains n input samples. If n(Fi, S) is the number of instants 
in the training data set S belonging to the class Fi (gully, non-
gully), the information needed to classify S is computed as:

(8)

WCijF =
NpixSi

�
NpixNi�∑

NpixNi − NpixSi
���∑

NpixNi − NpixNi

� .

(9)Discij =
WcijF̄

∑m

j=1
WcijF̄

,

(10)WCijF̄ =

�
NpixNi − NpixSi

��
NpixNi

∑
NpixNi −

∑
NpixSi −

�
NpixNi + NpixSi

���∑
NpixNi − NpixNi

� .

(11)Unc = 1−Dis−Bel,

(12)Pls = 1−Dis.

(13)BelX =
BelABelB + BelAUncB + BelBUncA

�
,

(14)DisX =
DisADisB + DisAUncB + DisBUncA

�
,

(15)UncX =
UncAUncB

�
,

(16)PlsX = UncX + BelX .

(17)� = 1 − BelADisB − DisABelB.

(18)Info(S) = −

2∑

i=1

n
(
Fi, S

)

|S|
log2

n
(
Fi, S

)

|S|
.

The amount of information to split S into (S1, S2, …, Sm) 
regarding the gully influential factor A is computed as:

The IGR for a specific factor A is calculated as:

where SplitInfo is the potential information produced by par-
titioning S into m subset and is computed as: 

Results and discussion

Feature selection using IGR

The analysis of feature selection using IGR was implanted 
in Weka software 3.9, and the result is demonstrated in 
Table 2. The average merit here was used to represent the 
average information gain ratio and its standard deviation 
using the tenfold cross-validation technique (Tien Bui et al. 
2016). From Table 2, the highest average merit (0.221) was 
obtained for geomorphology, followed by altitude (0.218). 
This was followed by land cover (0.055), lithology (0.054), 
soil texture (0.045), LS (0.024), SPI (0.011), and TWI 
(0.009). In contrast, the four remaining influential factors 
(slope, profile curvature, aspect, and plan curvature) had 0 
average merit, and thus, the inclusion of these factors in the 
analysis might have decreased the accuracy of the developed 
model. Therefore, these factors were removed and the rest of 
the analysis was carried out using only 8 factors.

Applying bivariate models and generation of gully 
erosion susceptibility maps

The reclassified influential gully erosion factor maps were 
firstly interested with the training polygons (14 polygons) 
using the Tabulated Intersection command of ArcGIS 10.2 
software to produce a table that contained the NpixSi for each 
class. The NpixNi was directly obtained from the attribute 
table of each reclassified factor. In this study, the total num-
ber of training gully pixels 

�∑
NpixSi

�
 equaled 25,867, while 

(19)Info(S,A) = −

m∑

j=1

Sj

|S|
Info(S).

(20)IGR(S,A) =
Info(S) − Info(S,A)

SplitInfo(S,A)
,

(21)SplitInfo(S,A) = −

m∑

j=1

|||Sj
|||

|S|
log2

|||Sj
|||

|S|
.
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the number of pixels in the total study area 
�∑

NpixSi
�
 was 

1,753,516. All four of these values were used to calculate 
weights in InVal, probability ratio in FR, and mass functions 
of EBF (Table 3), using Eqs. 4, 5, 7–12, respectively. 

The spatial relationship between each influential gully 
factor and gully distribution by InVal (Table 3) indicated that 
alluvial fan and sand dune landforms had positive Wi and 
subsequently high probability to develop gullies. The Wi for 
flood plain and glacis were negative, indicating a lower prob-
ability of gully occurrence and that, therefore, these classes 
besides depression (Wi = 0) were less susceptible to the gully 
process. In the case of altitude, it can be seen that Wi was 
positive for the range 30–300 m (low hill–hill), indicating a 
higher probability of gully occurrence for this range. With 
respect to land cover, sand dune and low-density green cover 
lands have the highest Wi values (0.66 and 0.86, respec-
tively), indicating that these classes were more susceptible 
to gully process. The other land cover classes had negative 
values, and as a result they were less prone to gully erosion. 
For the lithology, eolian deposits had the highest value and 
positive Wi (0.77), indicating that these lithological units 
were more prone to gully. All other lithological units had 
negative Wi and were thus less prone to the gully erosion 
process. For the soil texture, it can be seen that silty loam 
texture (Wi = 0.60) had a high proneness for gully occur-
rence. LS’s proneness to gully erosion was higher in areas 
where the LS was greater than 0.40, and the susceptibility to 
erosion increases with the increase in LS values. For the SPI 
and TWI, similar results were obtained. The areas with the 
highest values of SPI and TWI had higher positive Wi, and 
thus these areas were more prone to gully erosion.

To map gully erosion susceptibility (GES) in the study 
area using the InVal technique, the calculated Wi was 
summed up by means of an overlay procedure to get the 
final scores for the susceptibility map. The GES values 

were classified into five classes based on the quantile clas-
sification scheme: very low, low, moderate, high, and very 
high, Fig. 6a. Selection of this classification scheme is based 
on the studies of Youssef et al. (2015) and Rahmati et al. 
(2016b), which indicated that the quantile classification 
scheme is a good classifier in susceptibility mapping. The 
very low–low classes cover an area of 492 km2 (31%), while 
the moderate class encompasses an area of 356 km2 (23%). 
The area occupied by high–very classes is 727 km2 (46%).

The result of applying the FR model is also shown in 
Table 3. From this table, the alluvial fan landform had a 
higher FR value (3.57), followed by sand dune (1.33), imply-
ing the highest prone-to-gully susceptibility, whereas other 
geomorphological land forms had a low FR, indicating less 
vulnerability to gully erosion. In the case of altitude, the 
30–90 and 90–300 m classes had FR values of 1.65 and 1.69, 
respectively, indicating that gullies were more likely to occur 
at these elevations. For land cover factor, the most vulner-
able classes to gully erosion with high FR were low-density 
green cover (FR = 2.37) and sand dune (FR = 1.93), followed 
by high-density green cover (1.41). Analysis of lithology 
showed that the eolian deposits had the highest FR value 
(2.16), followed by sheet runoff deposits (0.516), implying 
that these classes were more prone to gully. Regarding soil 
texture, the highest FR values were observed for silty loam, 
silt, and fine sand (1.82, 0.63, and 0.63, respectively), indi-
cating that these classes were more prone to gully erosion. 
The other classes had FR values equal to “0”, and thus they 
were regarded as insignificant in developing gully land-
forms. For the LS factor, the highest FR values (1.94, 1.62, 
1.20, and 1.19) were recorded for the classes (3.25–7.14, 
1.30–3.25, 0.39–1.30, and 7.15–33.15), respectively, indi-
cating that they were highly susceptible to gully erosion. 
Referring to SPI, FR values greater than 1 were recognized 
for the last range (0.06–1.11), indicating a significant rela-
tionship between gully occurrence and SPI for this range. 
The other classes had FR values greater than “0”, and thus 
these classes played a minor role in developing gully erosion 
phenomena in the study area. And finally, regarding TWI, 
the most significant class that affects gully occurrence was 
(12.63–21.90) and (10.32–12.63) with FR values of 1.42 and 
1.24, respectively, indicating a higher probability of gully 
development compared to other classes.

The map of GES using the FR model (Fig.  6b) was 
obtained by applying Eq. 6 and using the Weighted Sum 
module in ArcGIS 10.2 software. The obtained GES val-
ues varied from 3.23 to 16.66 and were classified into five 
classes using the quantile classification scheme: very low, 
low, moderate, high, and very high. The areas encompassed 
by these classes were distributed as: 683 km2 (43%) for very 
low–low classes, 356 km2 (22%) for moderate class, and 
588 km2 (73%) for high–very high classes.

Table 2  GRI for the influential gully factors

Rank Influential factors Average merit SD

1 Geomorphology 0.221 ± 0.003
2 Altitude 0.218 ± 0.002
3 Land cover 0.055 ± 0.002
4 Lithology 0.054 ± 0.002
5 Soil texture 0.045 ± 0.002
6 LS 0.024 ± 0.002
7 SPI 0.011 ± 0.001
8 TWI 0.009 ± 0.001
9 Slope 0 0
10 Profile curvature 0 0
11 Aspect 0 0
12 Plan curvature 0 0
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The results of applying EBF are also summarized in 
Table 3 in terms of four mass functions (Bel, Dis, Unc, and 
Pls). A comparatively high value of Bel function implies a 
higher probability of gully proneness and vice versa. Anal-
ysis of Bel values in Table 3 indicated the gully erosion 
was more likely to occur in alluvial fan (0.65), elevation 

range (90–300) (0.50) and (30–90 m) (0.49), low-density 
green land cover class (0.86) and sand dune (0.66), eolian 
deposits (0.77), silty loam soil texture class (0.55), LS class 
(3.25–7.14) (0.30), SPI class (0.06–1.11) (0.27), and TWI 
class (12.63–21.90) (0.26). The other classes had low values 

Table 3  Calculation of FR, Wi, and mass functions for the influential flood factors

Factor Class NpixNi NpixNi % NpixSi NpixSi % FR Wi Mass functions of EBF

Bel Dis Unc Pls

Geomorphology Sand dunes 690,334 0.394 13,548 0.524 1.330 0.285 0.232 0.149 0.619 0.851
Alluvial fan 221,963 0.127 11,700 0.452 3.573 1.273 0.644 0.119 0.238 0.881
Flood plain 32,368 0.018 334 0.013 0.700 − 0.357 0.121 0.191 0.688 0.809
Glacis 796,016 0.454 286 0.011 0.024 − 3.715 0.004 0.349 0.647 0.651
Depression 12,835 0.007 0 0 0 0 0.000 0.192 0.808 0.808

Altitude (m) < 9 (plains) 6523 0.004 0 0 0 0 0.000 0.265 0.735 0.735
9–30 (rises) 697,229 0.398 307 0.012 0.030 − 3.512 0.009 0.438 0.554 0.562
30–90 (low hills) 994,765 0.567 24,188 0.935 1.648 0.500 0.489 0.039 0.472 0.961
90–300 (hills) 54,999 0.031 1373 0.053 1.692 0.526 0.502 0.258 0.240 0.742

Land cover Bare mud sheet 161,046 0.092 535 0.021 0.225 − 1.491 0.032 0.136 0.832 0.864
Deserted crop land 23,627 0.013 151 0.006 0.434 − 0.836 0.063 0.127 0.811 0.873
Dry salt land 150,198 0.086 11 0.000 0.005 − 5.305 0.001 0.138 0.862 0.862
High-density green cover 132,673 0.076 2764 0.107 1.412 − 0.345 0.207 0.121 0.672 0.879
Low-density green cover 189,462 0.108 6612 0.256 2.366 0.861 0.352 0.105 0.544 0.895
Quarry 227,506 0.130 518 0.020 0.154 − 1.868 0.022 0.142 0.836 0.858
Sand dune 483,964 0.276 13,786 0.533 1.931 0.658 0.285 0.081 0.634 0.919
Sand sheet 384,990 0.220 1490 0.058 0.262 − 1.338 0.038 0.152 0.810 0.848

Lithology Eolian deposits 542,839 0.310 17,255 0.667 2.155 0.768 0.811 0.108 0.081 0.892
Flood plain deposits 54,312 0.031 0 0 0 0 0.000 0.233 0.767 0.767
Depression fill deposits 24,744 0.014 0 0 0 0 0.000 0.229 0.771 0.771
Sheet runoff deposits 1,131,571 0.645 8612 0.333 0.516 − 0.662 0.189 0.430 0.381 0.570

Soil texture Silty clay loam 50 0.000 0 0 0 0 0.000 0.200 0.800 0.800
Sandy loam 138,649 0.079 0 0 0 0 0.000 0.217 0.783 0.783
Fine sand 745,306 0.425 6913 0.267 0.629 − 0.464 0.187 0.255 0.557 0.745
Silty loam 557,029 0.318 14,911 0.576 1.815 0.596 0.550 0.123 0.326 0.877
Silt 312,482 0.178 4043 0.156 0.877 − 0.131 0.262 0.205 0.533 0.795

LS 0–0.38 1,268,422 0.723 16,717 0.646 0.893 − 0.113 0.129 0.247 0.623 0.753
0.39–1.3 400,866 0.229 7090 0.274 1.199 0.181 0.174 0.181 0.645 0.819
1.30–3.25 70,461 0.040 1685 0.065 1.621 0.483 0.237 0.188 0.575 0.812
3.25–7.14 12,068 0.007 346 0.013 1.942 0.664 0.286 0.191 0.523 0.809
7.15–33.15 1649 0.001 29 0.001 1.192 0.176 0.173 0.193 0.634 0.807

SPI − 2.07 to (− 0.41) 49,976 0.02850127 529 0.020 0.718 − 0.332 0.148 0.202 0.651 0.798
− 0.41 to (− 0.23) 198,950 0.113461 2524 0.098 0.860 − 0.151 0.177 0.204 0.619 0.796
− 0.23 to (− 0.09) 375,604 0.21420661 5348 0.207 0.965 − 0.035 0.199 0.202 0.599 0.798
− 0.09 to 0.06 942,214 0.53734375 13,892 0.537 0.999 − 0.001 0.206 0.200 0.593 0.800
0.06 to 1.11 186,722 0.10648738 3573 0.138 1.297 0.260 0.269 0.193 0.538 0.807

TWI 3.44–7.28 345,864 0.197 4792 0.185 0.939 − 0.063 0.171 0.202 0.626 0.798
7.28–8.73 604,910 0.345 7904 0.306 0.886 − 0.121 0.161 0.211 0.627 0.789
8.73–10.32 470,417 0.268 6856 0.265 0.988 − 0.012 0.180 0.200 0.620 0.800
10.32–12.63 241,517 0.138 4419 0.171 1.240 0.215 0.227 0.191 0.581 0.809
12.63–21.90 90,758 0.052 1895 0.073 1.415 0.347 0.260 0.195 0.545 0.805



www.manaraa.com

 Environmental Earth Sciences (2018) 77:249

1 3

249 Page 16 of 20

Fig. 6  Maps of gully erosion 
susceptibility a InVal model, b 
FR model, c EBF model
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and were considered to have less impact on gully erosion 
phenomena.

To map gully erosion susceptibility using the EBF model, 
the lookup function module of the spatial analysis extension 
of ArcGIS 10.2 was used to generate mass functions raster 
layers to be used in combination with the process of Demp-
ster’s rules (Eqs. 13–17). The two mass functions of geomor-
phology and altitude factors were first combined. The result-
ing combined layer was combined with the land cover mass 
functions layer to generate another combined layer and so on. 
In total, seven combining processes were carried out to get 
the final integrated mass functions maps. The integrated Bel 
map (Fig. 6c) was used as an index to reveal the condition of 
gully erosion susceptibility. The pixel value of Bel was clas-
sified into five classes similar to the way of InVal and the FR 
model: very low, low, moderate, high, and very high. These 
classes were distributed over the study area as: 489 km2 (31%) 
very low–low, 298 km2 (19%) moderate, and 788 km2 (50%) 
high–very high.

Validation of gully erosion susceptibility map using 
ROC curve

The results of the model validation using the ROC tech-
nique (implemented in EDRIS Selva 17.0) in terms of suc-
cess (training) and predicting (testing) rates are presented 
in Fig. 7. The best bivariate model in the training stage was 
FR (AUC = 0.855), followed by InVal (AUC = 0.849). The 
worst model in this stage was EBF with AUC equal to 0.834. 
In contrast, the best model in the testing stage was InVal 
(AUC = 0.829), followed by FR (AUC = 0.824) and EBF 
(AUC = 0.815). From these results, it can be concluded that 
the InVal model was the best bivariate model for describing 
gully erosion susceptibility in the study area, while the worst 
model was EBF.

Fig. 6  (continued)
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Conclusions

Mapping of gully erosion susceptibility is an essential step 
in controlling and mitigating the effects of soil erosion in 
an area. To develop gully erosion susceptibility maps, dif-
ferent modeling techniques have been adopted so far. Due 
to their simplicity and ease of implementation under the 
GIS platform, three bivariate techniques, namely informa-
tion value, frequency ratio, and evidential belief functions, 
were used here to map gully erosion susceptibility at Ali 
Al-Gharbi District in northern Maysan Governorate, south-
ern Iraq. To apply bivariate models, two things should be 
prepared: a gully area inventory map and gully influential 
factors. Through interpretation of remotely sensed data and 
field survey, 21 areas affected by gully erosion were mapped. 
The area affected by gully erosion was partitioned into two 
sets: 14 gully areas (polygon format in GIS) were used for 
training the bivariate models, and the remaining areas (7) 
were used for testing and validating the developed models. 
Twelve gully erosion influential factors were chosen based 
on the literature review and availability of data. These fac-
tors were altitude, slope, profile curvature, plan curvature, 
aspect, TWI, SPI, LS, lithology, geomorphology, soil tex-
ture, and land cover. Screening of influential factors using 
the information gain ratio proved that eight factors (altitude, 
TWI, SPI, LS, lithology, geomorphology, soil texture, and 
land cover) were important in developing gully landforms 
in the study area, while the other four factors (slope, profile 
curvature, plan curvature, and aspect) were insignificant in 
the gullying process. Using the most important factors and 
training gullies inventory map, three bivariate models were 
developed and used to generate gully erosion susceptibility 
maps. The developed maps were validated using the rela-
tive operating characteristics curve, and the results showed 
that the InVal model was the best in terms of prediction 

rate. The worst model was the evidential belief function as 
it compared with the other models, InVal and FR. For the 
best performance model, InVal, the gully erosion suscep-
tibility index values were classified into five classes using 
the quantile classification scheme: very low, low, moderate, 
high, and very high. The very low–low classes covered an 
area of 492 km2 (31%), the moderate class encompassed an 
area of 356 km2 (23%), while the high–very high classes 
extended over an area of 727 km2 (46%). About 50% of the 
study area is exposed to gully erosion; therefore, creation of 
mitigation and erosion control plans is highly necessary in 
the study area.
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